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– What is Machine Learning, how good is it really? (15 mins)
– Classification (20 mins)
– Unsupervised Machine Learning (20 mins)
– 5 min break
– Deep Learning w/ Images (20 mins)
– Large Language Models (15 mins)
– Ethical AI and Safeguarding Users (20 mins)
– Q&A (5 mins)

A Crash Course in 2 Hours
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About Me
– BEng(Mech)(Hons. 1)/BSc(Adv)
– Majors in Space 

Engineering/Physics
– Honours @ Nearmap on small 

object reconstruction
– Teach Experimental Robotics, 

System Dynamics & Control + 
Mechatronic Systems Design

– Leading collaboration w/ Physics & 
Geosciences on AI-enabled edge 
data curation for remote sensing
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– Features are hard to track with 
refraction

– Reflection at non-normal angles 
mis-represents distance

– Result:
– Drones crash
– Spot walks onto black ice!

Appearances Are Deceiving to Robots
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– Fields represent the underlying 
physical quantities which we 
measure

– Gravity, acoustics, fluids, light, 
electromagnetism are the language 
of nature

– To reconstruct the field is exceedingly 
challenging – so we use a neural 
network! A.k.a Neural Fields!

Neural Fields Acoustics

Light

… even 
Black Hole 
Emissions!

Levis et al. 2021



Page 8The University of Sydney

Reconstructing Light
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“It’s NeRF or nothing.” - Learn a 5D representation of light 
in a NN.

- Spatially varying density, 
spatially/view varying colour.

- Novel view synthesis.

Mildenhall et al. 2020
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– A NeRF Fly-Through using Instant-NGP
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What is Machine Learning, how good is it really?
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When Fields Collide
Artificial 

Intelligence

Machine
Learning

Deep 
Learning
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When Fields Collide
Artificial 

Intelligence

Machine
Learning

Deep 
Learning

Robotics
& Computer 

Vision

Data 
Science



Page 15The University of Sydney



Page 16The University of Sydney
OpenRobotics
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Amazon Science

Waymo
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Goddard et al.
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No longer need big GPUs! (Well, kinda)
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Classification
How to automate mundane, monotonous tasks
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Supervised Machine Learning
– Label data and learn a function to 

map input to output

– 2 types:
– Classification: break data into 

categories
– Regression: give a numerical 

result

– Most useful to predict outputs 
from unseen data
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Classification

– Those rewards programs, 
aren’t just for you

– The same algorithms we 
might want to work out 
whether fruits are citrus, 
berries etc. from their sugar 
content are what power 
retail stores, dating apps 
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How Might We Do This?

– Might look at how data is 
clustered?

– K-Nearest Neighbours
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How Might We Do This?

– Might look at attributes and 
make a decision statistically

– Naïve Bayes

– 𝑷𝑷 𝑨𝑨 𝑩𝑩 = 𝑷𝑷 𝑩𝑩 𝑨𝑨)𝑷𝑷 𝑨𝑨
𝑷𝑷(𝑩𝑩)
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How Might We Do This?

– Let us look for a boundary 
between the data

– Enter: the Support Vector 
Machine
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How Might We Do This?

– Let us look for datapoints 
known as support vectors

– Use these to place a 
decision boundary w/ max 
margin

– Larger margin = more 
robust

Margin
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How Might We Do This?

– Decision Boundary = 
Hyperplane

– 𝑯𝑯𝟏𝟏/𝟐𝟐:𝒘𝒘 ⋅ 𝒙𝒙 + 𝒃𝒃 = ±𝟏𝟏
– 𝒘𝒘 is vector which defines 

hyperplane placement

– Margin = 
𝟐𝟐

| 𝒘𝒘 |
, so we want 

to minimise 𝒘𝒘
Margin

𝐻𝐻1 = 1

𝐻𝐻2 = −1 𝑤𝑤
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How Might We Do This?

– Outliers? We make optimise 
such that margin is best, so 
some classifications might 
be incorrect.

– What’s more troubling is 
data which is not well 
separated by lines…

Margin
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How Might We Do This?

– I won’t go into the maths 
here, but…

– Transform data to higher 
dimensions, we can draw 
straight lines to cut the 
distribution.
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An example with Ping Pong balls



Page 37The University of Sydney

Let’s try out an SVM to try and detect breast 
cancer.
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What worked best?

Which non-linear kernels?

Why is it not 100% accurate?

Would you trust this instead of a 
Doctor?
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Unsupervised Machine Learning
Letting the data make decisions
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Why would we not want to supervise data?

Supervision = a form of prior, something we know

E.g. horses do not have stripes, and therefore are not 
zebras

We can let models decided which parts of the data 
are useful to accomplish a task
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Neural Networks

Wikimedia
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– Remember the 
classifier? Not all 
decisions are linear.

– Non-linear 
activations give a 
non-linear response

Activation Functions

Johnson et al. 2020
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– Complex decisions require 
something that can approximate 
the function which creates them

– Single neurons suited to linear, 
binary problems on low-
dimensional data

– We link many together to form a 
network, consisting of layers

More Neurons

ESA



Page 45The University of Sydney
Tikz.net
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Recognising Handwritten Digits (A Classifier!)

MTRX5700
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Training (3blue1brown visualisation)

3blue1brown
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Isn’t this meant to be a section on unsupervised 
learning?
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An Unsupervised Task - Reconstruction

𝑧𝑧

Encoder Decoder
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Auto-Encoders

No human labels - all 
data is its own label

Network decides the 
intermediary features 
which are important

Able to compress high 
dimensional data into a 

lower dimension
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Auto-Encoding MNIST
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5 mins Break
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Deep Learning with Images
Turning cameras into eyes
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Remember those Auto-Encoders?

𝑧𝑧

Encoder Decoder
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Remember those Auto-Encoders?

𝑧𝑧

Encoder Decoder

Efficiently reduces dimensions 
by learning features!
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Deep Learning
– Uses something called representation learning

– Learns increasingly abstract representations of data known as features

LeCun
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Wikimedia
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Convolutions

– The basis for most (though transformers have become very 
popular) modern deep learning networks

– Exploit locality of features (important stuff will not be a 
single point!)

Duke
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Transfer Learning

– Lots of features are the 
same

– Edges, textures, eyes, 
hands, wheels, tables etc.

– Leverage networks with lots 
of experience obtaining 
features

Koala helps a network 
with plane?
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Semantic Segmentation

– Deep learning where each 
pixel is given a 
classification

– Allows a network to tell us 
which groups of pixels are 
together, and where they 
are in an image.

KITTI
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Semantic Segmentation of Cats & Dogs
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Large Language Models
Or: How I Learned to Stop Worrying and Love ChatGPT
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– Landmark paper 
introduced the 
Transformer 
architecture

– Attention is 
fundamentally letting 
the network learn what 
inputs to base an 
output on

Not good until recently!
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The Transformer Architecture

Viswani et al.
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GPT2
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Fine-Tuning
– Similar in a way to transfer learning

– Start with something that has been 
trained well on everything, then show it 
specific data at the end

– The breadth of training should prevent 
overfitting

– Good to LLM to mimic a certain style of 
writing

Smithsonian
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Let’s generate some Honi Soit extracts
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Here’s one I prepared earlier…

The public relations disaster that has befallen academia is not just a setback 
for the profession. It is also a serious cause for concern for the future of the 
humanities as a whole. Primarily because of the pervasive nature of the 
pandemic, many university degrees have been rendered pointless for many 
students. “The university should be a place where students make decisions 
for themselves,” said USyd’s Simon Rice. “It should be a place where people 
make decisions for themselves,” an Australian higher education activist I 
spoke with echoed. “It shouldn’t be a place where students are put through 
the rigours of a higher education process, where they are given a choice 
between a miserable future and an appalling one.”
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Ethical AI and Safeguarding Users
Why you don’t have to worry quite yet…
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– These are taken from the ICLR Code of Ethics
– Contribute to Society and to Human Well-being
– Uphold High Standards of Scientific Excellence
– Avoid Harm
– Be Honest, Trustworthy and Transparent
– Be Fair and Take Action not to Discriminate
– Respect the Work Required to Produce New Ideas and Artefacts
– Respect Privacy
– Honour Confidentiality

AI Researchers Now Have Ethical Principles
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Where this hasn’t been done…
– Duke MTMC (Multi-Target, Multi-

Camera) was a dataset of 
surveillance footage

– 14hours @ 1080p, 60fps of 2000 
students on 8 cameras

– Designed for individual 
recognition, tracking and re-
identification

– Now no longer publicly available.

Exposing AI
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Where was this used?

– These are just where 
there’s citations!

Exposing AI
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Representative Data

– Models are only as good as 
their data

– If the data is not 
representative, the models 
are not representative
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Generative Models + Deepfakes

MIT
DALL-E
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Adversarial Attacks

– An emergent field: protecting 
users of machine learning 
from bad actors

– We can prevent this by 
designing our networks 
carefully (Lipschitz bounded 
NNs for example, see papers 
by my colleague Patricia Pauli 
@ Uni. Of Stuttgart) 

OpenAI

Eykholt et al. 2018
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The Answer Might Lie in the Data
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Killer Robots? Your Job?



Jack Naylor

Email: jack.naylor@sydney.edu.au
Website:    nackjaylor.github.io
Twitter: @nackjaylor

mailto:jack.naylor@sydney.edu.au
https://nackjaylor.github.io/
https://twitter.com/nackjaylor
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