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A little about me...

PhD Candidate @ ACFR working
on: “Simultaneous Localisation
and Mapping Through Neural
Radiance Fields”

BE (Mechanical) (Hons. 1)/BSc
(Advanced)

Majored in Space Engineering &
Physics

UG Thesis @ Nearmap
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Things | Work On!

- Robotics
- Remote Sensing
- Embedded Al

- Perception & Sensing

The University of Sydney
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SA.Adelaide.302 - Flagpole at RAAF Edinburgh

The University of Sydney




Comparison to State of The Art

— Ground Truth
—— Candidate
- Wang et al. 2020

Z(m)

Benchmark on simulated imagery from 4.5km

altitude

Candidate features 8m long, single pixel wide

60 observations

Ours™ Ours* Wang et al.
(2020)*
Time 1.52 43.25 387.42
(s)
Iterati 436 2572 32486
ons
Errort 0.005 0.013 0.096
(m)

“Implementation in C++ (Ceres

Solver)

*Implementation in Python
tRoot mean squared error (RMSE) in

The University of Sydney
Y\
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All models are wrong, but some
models are useful.

George Box

The University of Sydney









Nature is Brutal

------------------------- () Observed

. . Reality

Light bends in gravity!

The University of Sydney Page 9



But we are cunning!

- Lensing? Like a
camera?

NN - Use physics to form
o BRe : an enormous
e camera!

"~ Gravitational lensing
: : influence of foreground

- Send a telescope to
take nice pictures!
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JWST
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. Q RS

WISE W2 4.6 um Spitzer/IRAC 8.6 pm JWST/MIRI 7.7 pm



A space telescope? So what?

548 moving parts 7000 parts

A lens to the childhood of the
universe...

The University of Sydney Page 13



Exploiting Gravity as a Space Engineer




Exploiting Gravity as a Space Engineer

Nature beat us to it!

The University of Sydney Page 15



Nature

Luckily for us: we
live in a continuous

world.

Things are smooth,

differentiable and
nynlnlnnhlp hwv
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The University of Sydney
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Nature is smooth and continuous!

Soun Light Even
d + the
Fluids CMBR

The University of Sydney Page 17



Everything is smooth, but
not everything is
solveable...



Everything is smooth, but
not everything is
solveable...

Do what everyone else does!
Throw a neural network at it!



Implicit Neural Representations
- Measure

00 0 Continuous
—_— Functions
as Discrete

- Samples

The University of Sydney



Implicit Neural Representations

The

University of Sydney

Cannot
Always
Reconstruct
Difficult
Continuous
Functions
from Discrete
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 EAVA

NO!

Not Unique
if
Undersamp
led!



Implicit Neural Representations

0 — i —
Fo

Learn an implicit function
to approximate the
continuous signal

The University of Sydney



Common Discretised Signals

Pixels are a Video has pixels and a Meshes, pointclouds
discrete space framerate (temporally and PD'E’s all have
discrete) discrete domains

The University of Sydney N FSA, NASA a nd Pu rd ue Page 24



An example: DeepSDF

- A simple case: learn S/ + pesen

where a surface is. R

e SDF >0
.I

- Discretise 3D space, © "
sample points and
say whether inside,
or outside the
bunny.

- Learn a continuous,
smooth surface
hich separates

The Unlver5| of Sydn

nhveical reaionc

Park et al. 2019
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What sort of network do we need?

F(x,®, Vi@, ViD,..) =0, ®:x+— O(x)

/

Approximate *some* Using *some*

function ReLU MLP nonlinear activation
function

An MLP works as a function
approximator, and by
Cybenko’'s theorem: there
exists an MLP of sufficient
dimension which can
approximate our function
well enough.

RelLU? Step? Leaky
RelLU?

The University of Sydney Page 26
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¢ and Vg and V(Ve) and ...

Differentiability of
continuous
functions is key!

A RelLU’s 2nd
derivative is O -
similar for many
other nonlinear
activation
functions!

The University of Sydney

P

V(Vep)




¢ and Ve and V(Ve) and ..

Differentiability of ¢ /\S‘”‘X’
continuous functions is /\ \
key! \/
Sine functions are Ve cos(x)
continuously /N /\
differentiable! ' \/ '

V(Ve)

We can model

/\ -sin(x)

information of higher
orders;: Higher
framinanciacl




SIREN

Sitzmann et al. 2020

The University of Sydney Page 30



Softplus

L2}
B2]
cC
1
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©
_
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S
/
/
|

Sitzmann et al. 2020
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Less pictures, more physics!

Greund TRl SIRERN TamH

O, O

.

The University of Sydney



Why does SIREN work?

- Underlying R |
smoothness to W o

derivatives

- Derivative of a WM >IREN
SIREN is a SIREN i.e.
decision making with _
derivatives. + RelU

- Pseudo-Fourier
decomposition

The Uni



Let’s go back to light... that’s smooth

m r S .
':'gmre right, it’s
smooth.

- But [t’s exceedingly

com




Cameras

Light

Optics

Sensor

The University of Sydney

Image

(Bayer Filter - Colour)

NN | ON | N

NN I NO(ON

NN NN
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Cameras

Light

Optics

Sensor

The University of Sydney

NN | WO

NO|  OIN|O N

NS00 | B0

ON(INO | KEN

Image
(Mono)
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What happens when we image
something?

3D

How many “D” is light? P(Q’(p’A’t’pst»Vy:Vz)

The University of Sydney



What happens when we image
something?

3D

How many “D” is light? P(Q’(p’A’t’pst»Vy:Vz)

8D!

The University of Sydney



What is the most we can ask the

camera? 9 0, 2 t D, VX,V V )

TN

Passing Wavelength T Aperture
Through  of Light Time  pojarisation  Pose

Aperture

The University of Sydney



What is the most we can ask the
camera?

P(93¢!Avi5)t)p)VX)Vy)VZ)

Regular Camera
(And t just implies videos)

Other cameras can give different, and sometimes greater
range of the plenoptic function.

The University of Sydney Page 40



“It's NeRF or nothi NG . Leam a 5D representation of light

in a NN.
(x.,2,0, ¢)—>|:||][|—>(RGB . - Spatially varying density,
spatially/view varying colour.
F o - Novel view synthesis.
/—"-—’_y uu”ﬁ Ray 1 /\
Lo o e e WallLEs)
< I 1 ot
Mildenhall et al. 2020

The University of Sydney
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NeRF Variants

The inverse problem!

Pixels aren't rays!

¥(x)

a) NeRF b) Mip-NeRF
Yen-Chen et al. 2021 Barron et al. 2020
. | New Way of thmklng about rays!
Get rld Of the NN Volumetrie & Ray-marching based rendering: [lundreds of samples per ray
29925 829 Sphorical ® L ] L] L ] L]
P . . if‘ ::s:;: f & Harmonics / T X Xu X3 xy - s lmimim Ray Color
2] v ey T A L= | =— (s
. .~ r /:’ e 4 . @313‘( )
2 [ | N - X
) . L Ditance ! =
he = . et . | 3 : TR ] i Light Field Networls: Single sample per ray
P N / s - ¢) Volumetric Rendering e
o e i W . LY - : Pliicker Cooards. miminiE e f
. " 2 \l minimize £, opon + AL7y | r=(d,x=d)] Ray Color
e ) LAY Obgerved c(e)
Training Yl s Tmage % Conditioning o /
g a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization I I I G o

Yu et al. 2022

The University of Sydney

Sitzmann et al. 2021
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+ many other variants!

The University of Sydney . Page 44



+ many other variants!

Scene TensoRF-VM

My personal favourite: consider
NeRFs as a bunch of tensors and do
linear algebra...

Chen et al. 2022
The University of Sydney Page 45



Different
light fields!

Depth for
free!

(We learn a
volumel)

The University of Sydney Page 46



RelLU MLP

The Key to NeRF :

¥(x)
z

o
+ =
7(x)
e — — — — — — — — — e
+

v(d)
24

v(x) = (sin(Qowx), cos(2'mx), . .., sin(2 1 rx), COS(QL_lﬂ'X))

Mildenhall et al. 2020

The University of Sydney Page 47



Compare the pair?

The University of Sydney . Page 48



Compare the pair?

Virtually /@
the same

to us! K

The University of Sydney



Compare the pair?

Virtually 0.6 /@
the same 2

to a 0.6 "

compute

r! 3

The University of Sydney



Compare the pair?

0.6 /@
2

0.6 L
3 I
0.8

6

The University of Sydney



Sinusoid
s of

different
frequenc

y

- oL L1
e Universiy of Sycney v(x) = (8111(20773{), C-OS(QUWX), . 73111(2L 177){), cos(2 WX)) -



_
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Physics

- Neural networks know nothing about the
real world!
- Fortunately, we’ve got a few hundred years

of understanding physics and nice maths!
- What ic NeRF mndnl!inn?

60
+ a

7(x)
g —> 256 —> 25 —> 256 —> 256 —> 256 —> 256 —» 256 —> 256 256 —» 128 ---> RGB

The University of Sydney Page 54



House of Mirrors

The University of Sydney



Mirrored Worlds

A NeRF is making sense of it, the best way it
knows!

The University of Sydney



How Light Usually Works

The University of Sydney

Reflecti
on

Transm
ission

Refract
ion



Directional

Learning under physikcez: :

- @Give the network

some physics! 15 O e
X ™ MLP ?’ — _iDH$;13n aljzi
- Reflections change S i

ray direction

Verbin et al. 2022

The University of Sydney




Traditional Deep Learning

‘ High-level ‘ Classifer
'fEatyresz _

Mid-level
features

S i

P(pedestrian)

The University of Sydney Page 59



The problem?

The University of Sydney Page 60



Learning under Geometry?

Masci et al. 2016

Cohen et al. 2018

The University of Sydney . Page6l



SLAM

@ Landmark

> Robot

P~

= Odometry

The University of Sydney
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Challenges

Traditional sensors Mapping under Changing scene
fail: e.g. high scattering and conditions
dynamic range attenuating media

Also reflection,

‘backscatter,
e Un%@fﬁrﬁfgﬁﬁre " Cy Page 64



NeRFs for Robotics: Our Approach

- Ray-based localisation framework
leveraging unique spatial and
visual representation in NeRF

Graphics: Fixed Poses

- Incremental mapping with online
updates

©@ NeRF Queries

-~
-

Robotics: Smooth,
controllable capture

The University of Sydney |mage from Sensor Page 65




Simultaneously Derive

a .
% =
%
S +

@

% y
i &

. ]

S,

The University of Sydney Page 66



Nature Doesn’t Always Work as
Intended

The University of Sydney . Page 67



Throwing neural networks at things is
cheating.

We study physics/maths/engineering
to understand the universe.

The University of Sydney . Page 68



Tap

3. Ice Water

Esky

Ty = 272K
0, = 4.217kJ/kg K

The University of Sydney

Cooling Coil

egs = 15 pm
kss = 15.1 W/m K

Ambient

Py = 101.325 kP:

PVC Coupling Line
Ty = 280 to 315 K

epyo = L.b pym
kpve = 0.18716 W/m K

—

__f—f—"""—'__'-_'q—'“‘\
1. COs ®
P, = 60 to 80 kPa (Gauge)
_ Tyikeg + TBer =
g
2. Beer ® —
C, =4.05k]/kgK Keg

p = 1020 kg/m*

Page 69



Throwing neural networks at things is
cheating.

We study physics/maths/engineering
to understand the universe.

Maybe we can make neural
nets smarter this way?

The University of Sydney



All models are wrong, but some
models are useful.

George Box

The University of Sydney



Q&A

Jack Naylor

Jack.naylor@sydney.edu.a
[T]

nackjaylor.github.io

THE UNIVERSITY OF

SYDNEY A ACFR

‘- AUSTRALIAN CENTRE
FOR FIELD ROBOTICS

The University of Sydney
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