# Stealing from Nature

**Manifolds and Models** 

#### Jack Naylor

PhD Candidate Australian Centre for Field Robotics

MUGS Aca-dustry Seminar Friday 6/5 4pm







#### A little about me...

PhD Candidate @ ACFR working on: "Simultaneous Localisation and Mapping Through Neural Radiance Fields"

BE (Mechanical) (Hons. I)/BSc (Advanced)
Majored in Space Engineering & Physics

UG Thesis @ Nearmap



# **Things I Work On!**

- Robotics

- Remote Sensing
- Embedded AI

Perception & Sensing



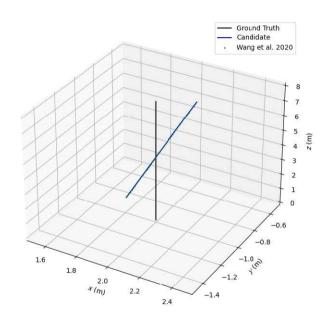
# **My UG Thesis**





SA.Adelaide.302 - Flagpole at RAAF Edinburgh

#### **Comparison to State of The Art**



- Benchmark on simulated imagery from 4.5km altitude
- Candidate features 8m long, single pixel wide
- 60 observations

|                           | Ours^ | Ours* | Wang et al.<br>(2020)* |
|---------------------------|-------|-------|------------------------|
| Time<br>(s)               | 1.52  | 43.25 | 387.42                 |
| Iterati<br>ons            | 436   | 2572  | 32486                  |
| Error <sup>†</sup><br>(m) | 0.005 | 0.013 | 0.096                  |

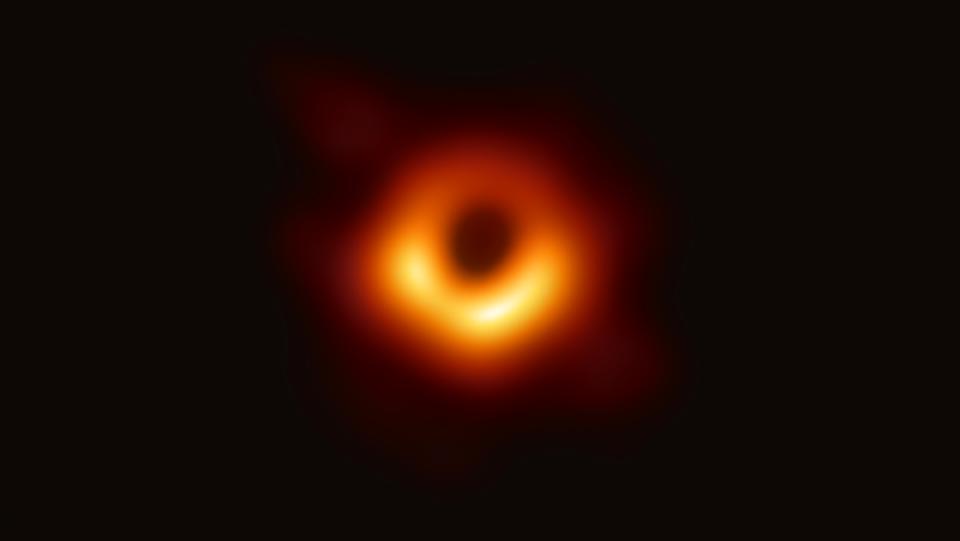
<sup>^</sup>Implementation in C++ (Ceres Solver)
\*Implementation in Duthen

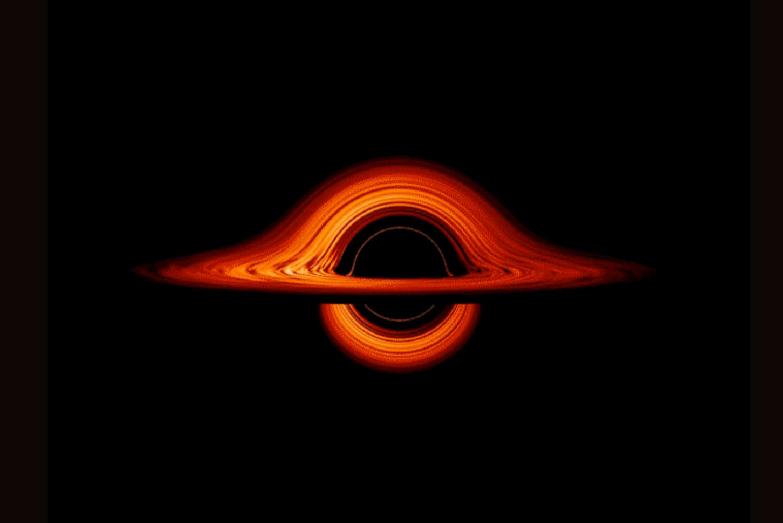
†Root mean squared error (RMSE) in

<sup>\*</sup>Implementation in Python

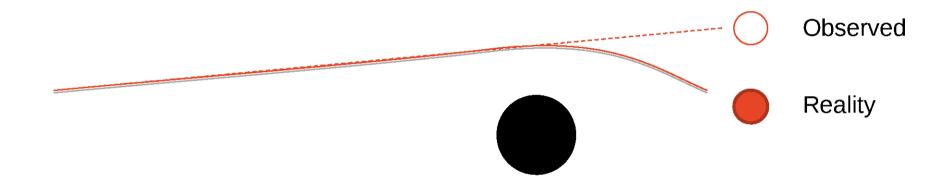
# All models are wrong, but some models are useful.

George Box



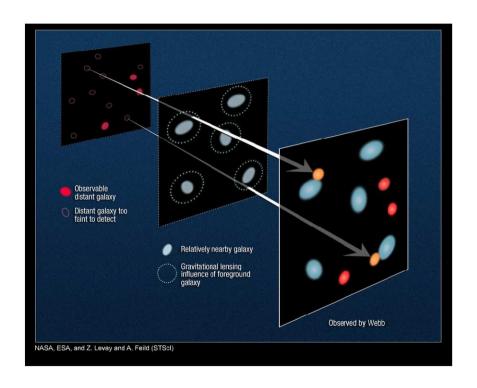


#### **Nature is Brutal**



Light bends in gravity!

#### But we are cunning!



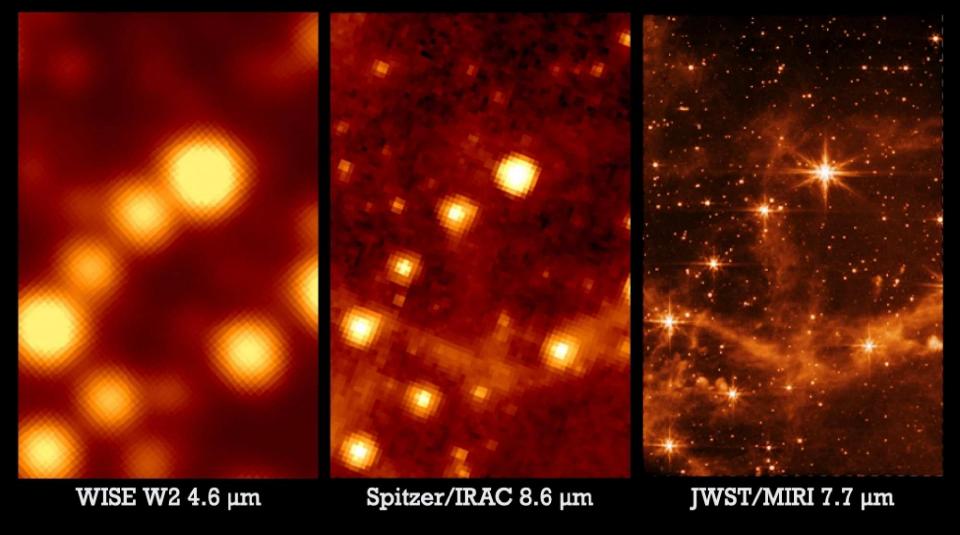
Lensing? Like a camera?

 Use physics to form an enormous camera!

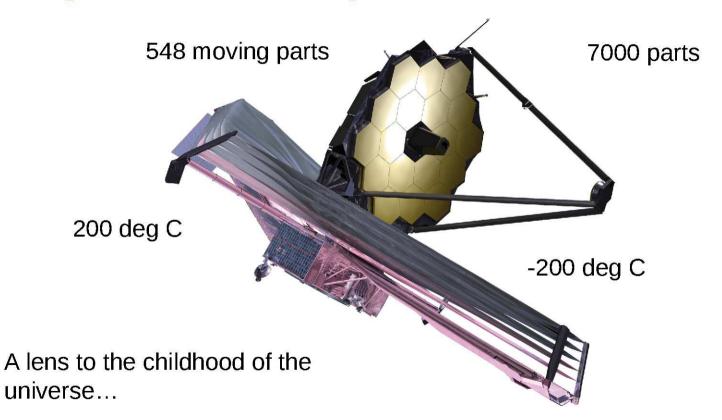
 Send a telescope to take nice pictures!

# **JWST**

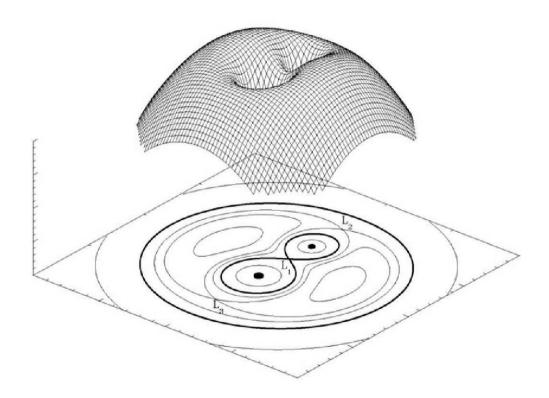




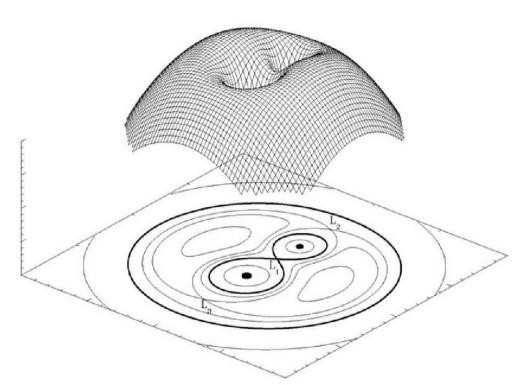
## A space telescope? So what?

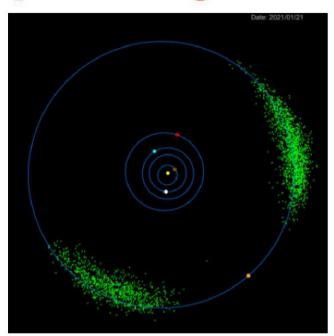


# **Exploiting Gravity as a Space Engineer**



# **Exploiting Gravity as a Space Engineer**





Nature beat us to it!

#### **Nature**

Luckily for us: we live in a continuous world.

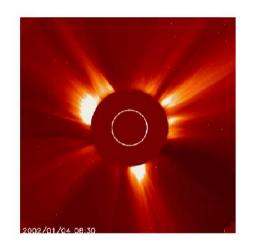
# Things are smooth, differentiable and explainable by

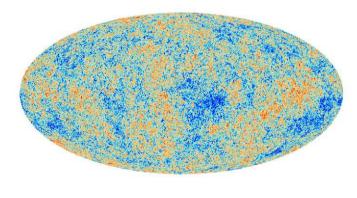
$$\begin{split} r : & \rho \left( \frac{\partial u_t}{\partial t} + u_r \frac{\partial u_t}{\partial \tau} + \frac{u_{\bar{\theta}}}{r \sin(\theta)} \frac{\partial u_r}{\partial \phi} + \frac{u_{\bar{\theta}}}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_{\bar{q}}^2 - u_{\bar{\theta}}^2}{r} \right) = -\frac{\partial p}{\partial r} + \rho g_r + \\ \mu \left[ \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial u_r}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial u_r}{\partial \phi} + \frac{u_{\bar{\theta}}}{r^2 \sin(\theta)} \frac{\partial u_r}{\partial \theta} \left( \sin(\theta) \frac{\partial u_r}{\partial \theta} \right) - 2 \frac{v_r + \frac{\partial u_{\bar{\theta}}}{\partial \theta} + u_{\bar{\theta}} \cot(\theta)}{r^2} - \frac{2}{r^2 \sin(\theta)} \frac{\partial u_{\bar{\phi}}}{\partial \phi} \right] \\ \phi : & \rho \left( \frac{\partial u_{\bar{\phi}}}{\partial t} + v_r \frac{\partial u_r}{\partial \tau} + \frac{v_2}{r \sin(\theta)} \frac{\partial u_{\bar{\phi}}}{\partial \phi} - \frac{u_r}{r} \frac{\partial u_{\bar{\phi}}}{\partial \theta} + \frac{u_r \partial u_r \cot(\theta)}{r} \right) = -\frac{1}{r \sin(\theta)} \frac{\partial p}{\partial \phi} + \rho g_{\phi} + \\ \mu \left[ \frac{1}{r} \frac{\partial}{\partial r} \left( r^2 \frac{\partial u_{\bar{\phi}}}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial u_{\bar{\phi}}}{\partial \theta} + \frac{u_r}{r} \frac{\partial u_{\bar{\phi}}}{\partial \theta} + \frac{u_r \partial u_r \cot(\theta)}{r} \right) + \frac{2 \sin(\theta)}{r} \frac{\partial u_{\bar{\phi}}}{\partial \theta} + 2 \cos(\theta) \frac{u_{\bar{\phi}}}{\partial \bar{\phi}} - u_{\bar{\phi}} \right] \\ \theta : & \rho \left( \frac{\partial u_{\bar{\phi}}}{\partial t} + u_r \frac{\partial u_{\bar{\phi}}}{\partial r} - \frac{u_{\bar{\phi}}}{\partial \theta} + u_{\bar{\phi}} \frac{\partial u_r}{\partial \theta} + \frac{u_r \partial u_r \cot(\theta)}{r} \right) + \frac{1}{r} \frac{\partial p}{\partial \theta} + \frac{u_r \partial u_r}{r} - \frac{u_r^2 \cot(\theta)}{r} \right) \\ \theta : & \rho \left( \frac{\partial u_{\bar{\phi}}}{\partial r} + u_r \frac{\partial u_{\bar{\phi}}}{\partial r} - \frac{u_r}{r} \frac{\partial u_{\bar{\phi}}}{\partial r} + \frac{u_r \partial u_r}{r} - \frac{u_r^2 \cot(\theta)}{r} \right) - \frac{1}{r} \frac{\partial p}{\partial \theta} + \frac{u_r^2 \cot(\theta)}{r} \frac{\partial u_r}{\partial \theta} \right) \\ \mu \left[ \frac{1}{r^2} \frac{\partial u_r}{\partial r} \left( r^2 \frac{\partial u_r}{\partial r} \right) - \frac{1}{r^2} \frac{\partial u_r}{\sin(\theta)} \frac{\partial u_r}{\partial \phi^2} + \frac{1}{r^2 \sin(\theta)} \frac{\partial u_r}{\partial \theta} \left( \sin(\theta) \frac{\partial u_r}{\partial \theta} \right) - \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} - \frac{u_r^2 \cot(\theta)}{r^2 \sin(\theta)^2} \right] \right] \\ \theta : & \rho \left( \frac{u_r}{r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) \\ \theta : & \rho \left( \frac{u_r}{r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) \\ \theta : & \rho \left( \frac{u_r}{r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) - \frac{1}{r^2} \frac{\partial u_r}{\partial r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) \\ \theta : & \rho \left( \frac{u_r}{r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) - \frac{u_r}{r^2} \frac{\partial u_r}{\partial r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) \\ \theta : & \rho \left( \frac{u_r}{r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) - \frac{u_r}{r} \frac{\partial u_r}{\partial r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) \\ \theta : & \rho \left( \frac{u_r}{r} + \frac{u_r}{r} \frac{\partial u_r}{\partial r} \right) - \frac{u_r}{r} \frac{\partial u_r}{\partial r}$$



#### Nature is smooth and continuous!







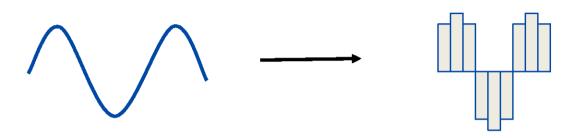
Soun d Light + Fluids Even the CMBR

# Everything is smooth, but not everything is solveable...

# Everything is smooth, but not everything is solveable...

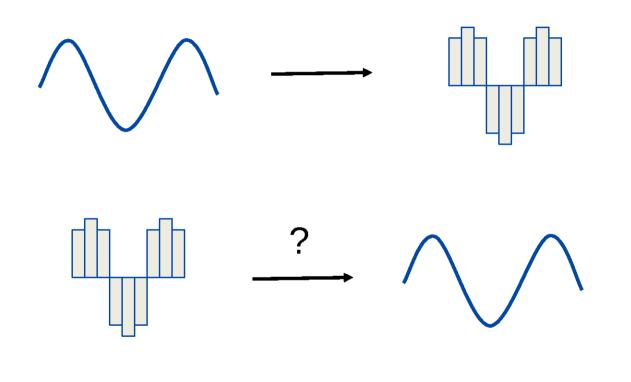
Do what everyone else does! Throw a neural network at it!

#### **Implicit Neural Representations**

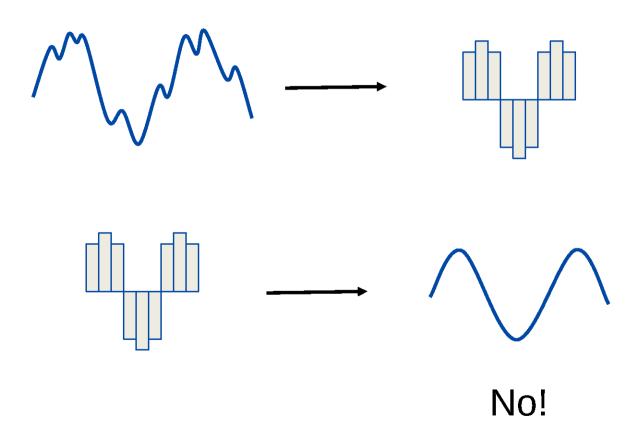


Measure Continuous Functions as Discrete Samples

#### **Implicit Neural Representations**

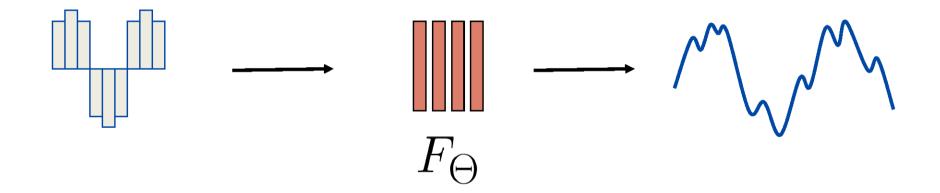


Cannot
Always
Reconstruct
Difficult
Continuous
Functions
from Discrete



#### Not Unique if Undersamp led!

### **Implicit Neural Representations**



to approximate the continuous signal

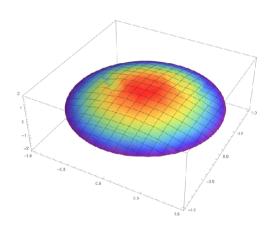
#### **Common Discretised Signals**



Pixels are a discrete space



Video has pixels and a framerate (temporally discrete)

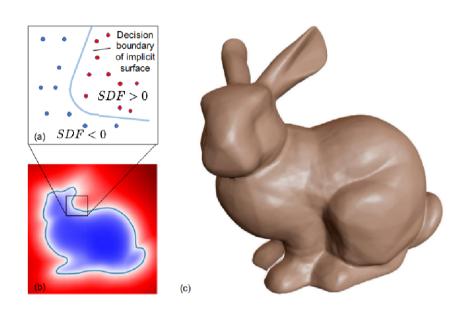


Meshes, pointclouds and PDE's all have discrete domains

#### An example: DeepSDF

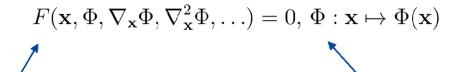
- A simple case: learn where a surface is.
- Discretise 3D space, sample points and say whether inside, or outside the bunny.

- Learn a continuous, smooth surface which separates physical regions.



Park et al. 2019

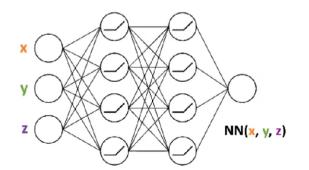
#### What sort of network do we need?



# Approximate \*some\* function

An MLP works as a function approximator, and by Cybenko's theorem: there exists an MLP of sufficient dimension which can approximate our function well enough.

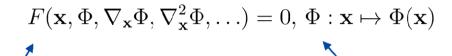
ReLU MLP



Using \*some\* nonlinear activation function

ReLU? Step? Leaky ReLU?

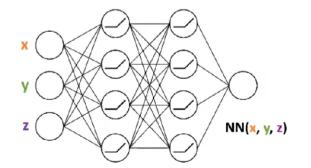
#### What sort of network do we need?



Approximate \*some\* function

An MLP works as a function approximator, and by Cybenko's theorem: there exists an MLP of sufficient dimension which can approximate our function well enough.

ReLU MLP



Using \*some\* nonlinear activation function

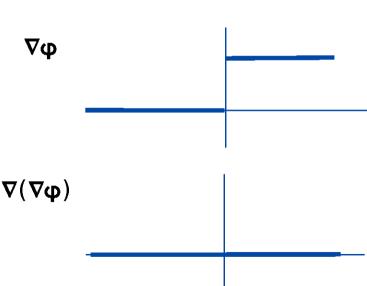
ReLU? Step? Leaky ReLU?

#### $\varphi$ and $\nabla \varphi$ and $\nabla (\nabla \varphi)$ and ...

Differentiability of continuous functions is key!

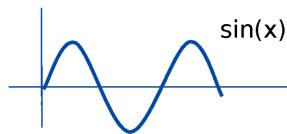
\_\_\_\_\_

A ReLU's 2nd derivative is 0 - similar for many other nonlinear activation functions!



#### $\varphi$ and $\nabla \varphi$ and $\nabla (\nabla \varphi)$ and ...

Differentiability of continuous functions is key!

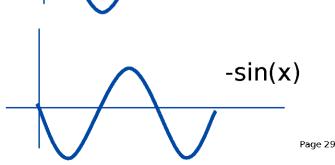


Sine functions are continuously differentiable!

 $\nabla \phi$   $\cos(x)$ 

 $\Delta(\Delta\Phi)$ 

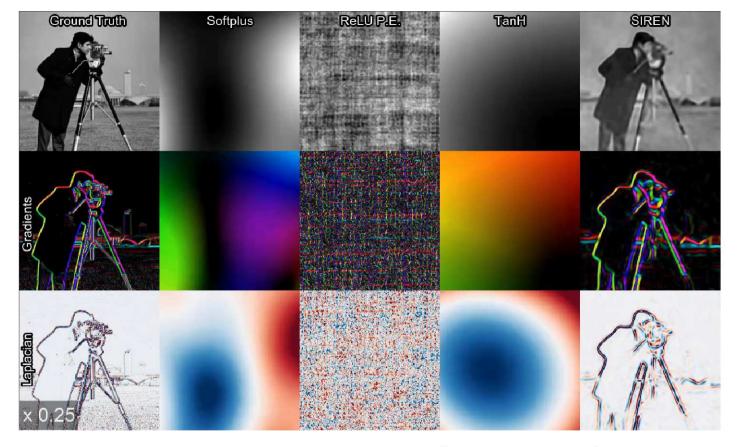
We can model information of higher orders! Higher frequencies!



#### **SIREN**



Sitzmann et al. 2020



Sitzmann et al. 2020

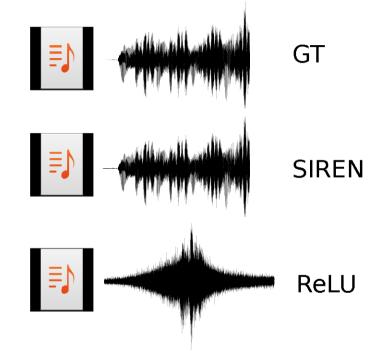
## Less pictures, more physics!



#### Why does SIREN work?

 Underlying smoothness to derivatives

 Derivative of a SIREN is a SIREN i.e. decision making with derivatives.



- Pseudo-Fourier decomposition

# Let's go back to light... that's smooth right?re right, it's smooth.

 But it's exceedingly com



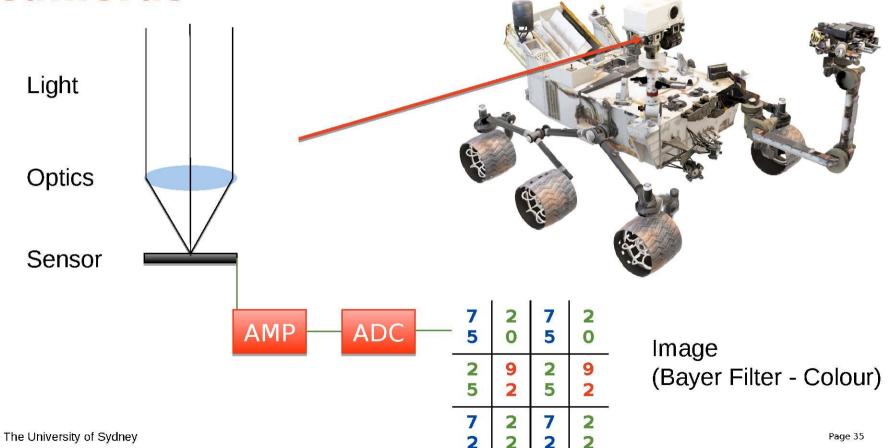
$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

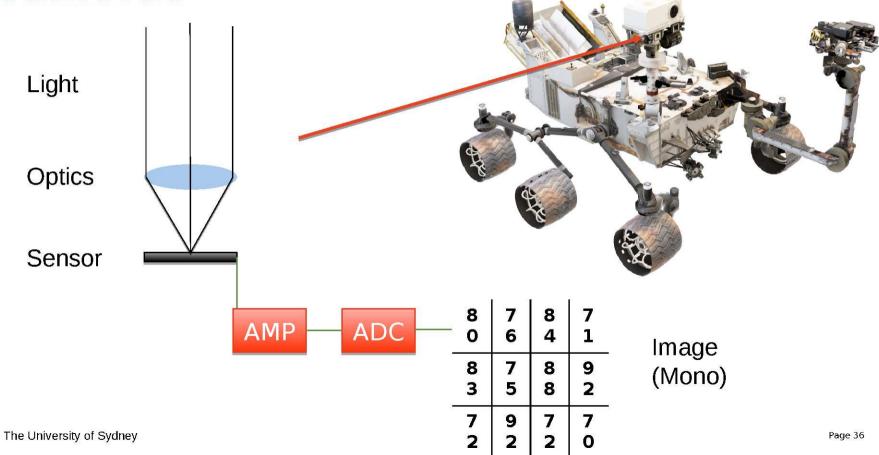
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

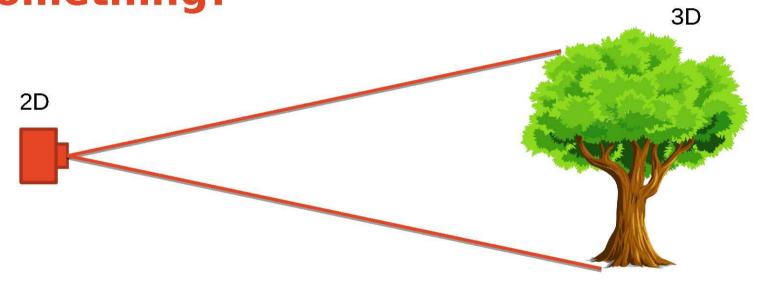
#### **Cameras**



#### **Cameras**



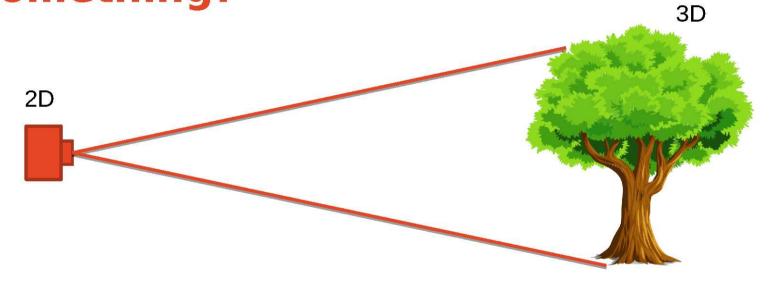
What happens when we image something?



How many "D" is light?

$$P(\theta, \phi, \lambda, t, p, V_x, V_y, V_z)$$

What happens when we image something?

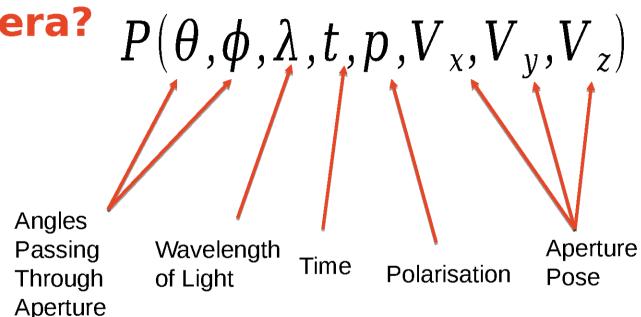


How many "D" is light?

8D!

The University of Sydney

 $P(\theta, \phi, \lambda, t, p, V_x, V_y, V_z)$ 



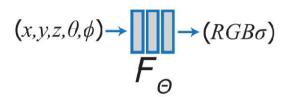
# What is the most we can ask the camera?

$$P(\theta, \phi, \lambda_{vis}, t, p, V_x, V_y, V_z)$$

Regular Camera (And t just implies videos)

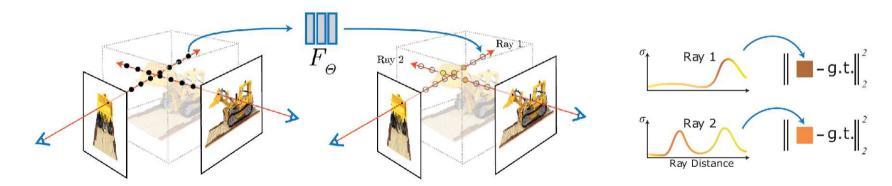
Other cameras can give different, and sometimes greater range of the plenoptic function.

### "It's NeRF or nothing. L'earn a 5D representation of light



in a NN.

- Spatially varying density, spatially/view varying colour.
- Novel view synthesis.



Mildenhall et al. 2020



#### **NeRF Variants**

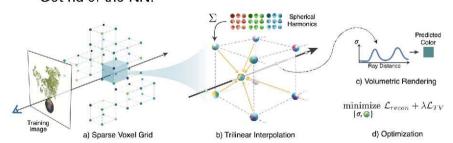
The inverse problem!





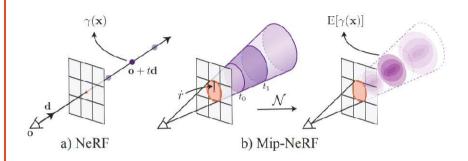
Yen-Chen et al. 2021

#### Get rid of the NN!



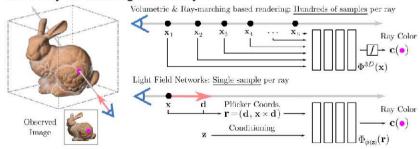
Yu et al. 2022

#### Pixels aren't rays!



Barron et al. 2020

#### New way of thinking about rays!

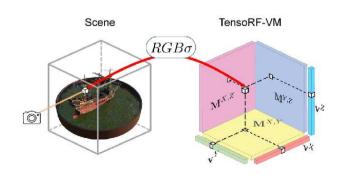


Sitzmann et al. 2021

#### + many other variants!

#### + many other variants!

My personal favourite: consider NeRFs as a bunch of tensors and do linear algebra...



Chen et al. 2022

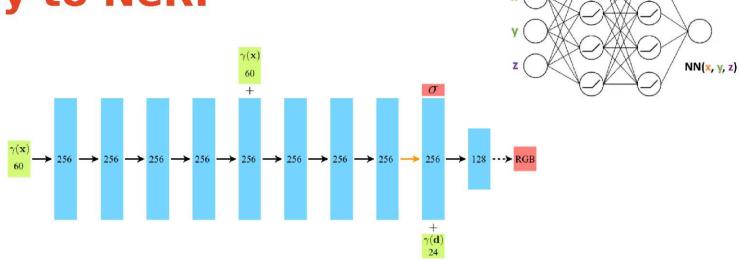


Different light fields!

Depth for free! (We learn a volume!)



#### The Key to NeRF

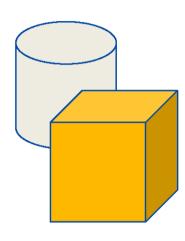


$$\gamma(\mathbf{x}) = \left(\sin(2^0 \pi \mathbf{x}), \cos(2^0 \pi \mathbf{x}), \dots, \sin(2^{L-1} \pi \mathbf{x}), \cos(2^{L-1} \pi \mathbf{x})\right)$$

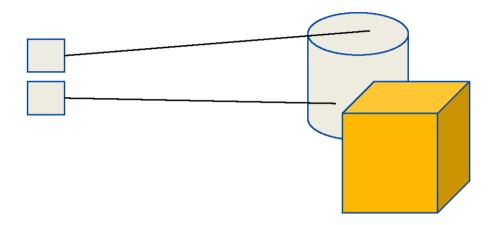
Mildenhall et al. 2020

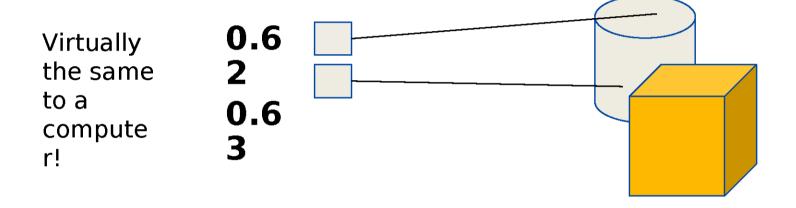
Rel U MI P

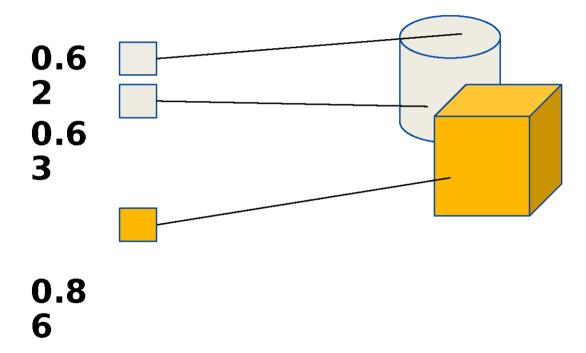




Virtually the same to us!











Sinusoid s of different frequenc

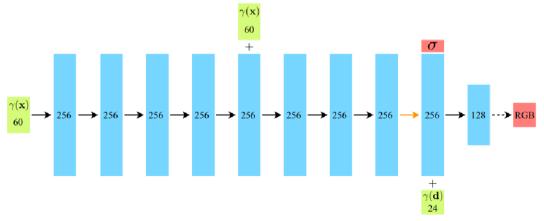


$$\gamma(\mathbf{x}) = \left(\sin(2^0\pi\mathbf{x}), \cos(2^0\pi\mathbf{x}), \ldots, \sin(2^{L-1}\pi\mathbf{x}), \cos(2^{L-1}\pi\mathbf{x})\right)$$
 The University of Sydney



#### **Physics**

- Neural networks know nothing about the real world!
- Fortunately, we've got a few hundred years of understanding physics and nice maths!
- What is NeRF modelling?

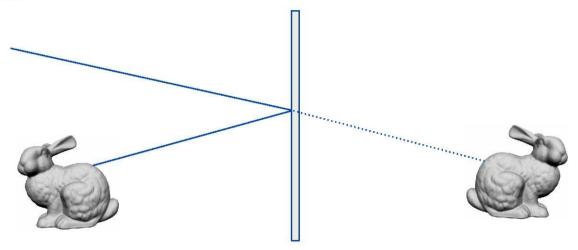


#### **House of Mirrors**

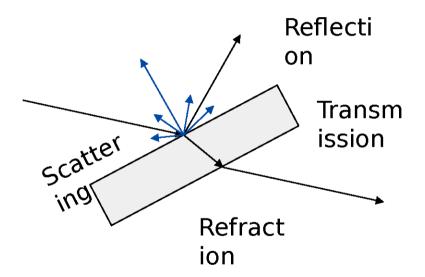


#### **Mirrored Worlds**

## A NeRF is making sense of it, the best way it knows!



#### **How Light Usually Works**

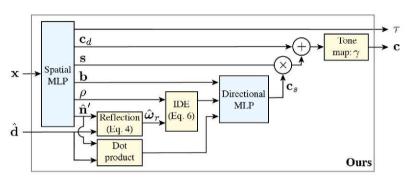


#### Learning under physic Spatial b

 Give the network some physics!

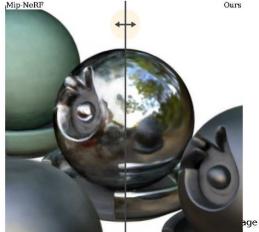
 Reflections change ray direction





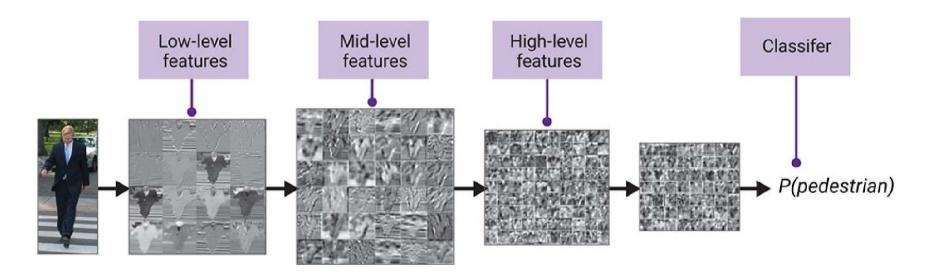
Directional MLP

Mip-NeRF



Verbin et al. 2022

#### **Traditional Deep Learning**

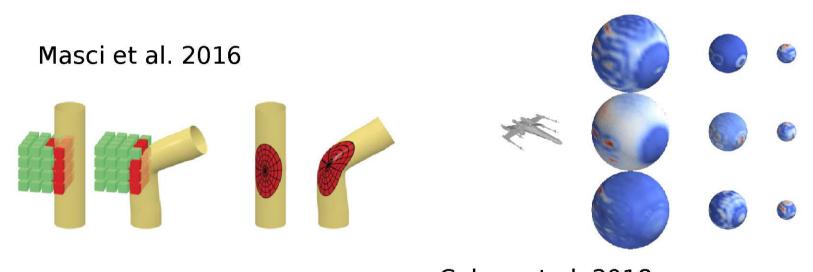


## The problem?



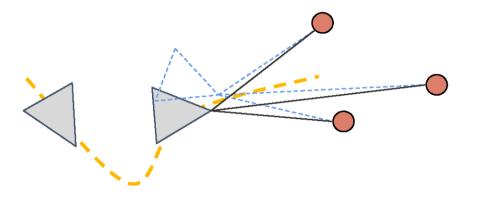


#### **Learning under Geometry?**

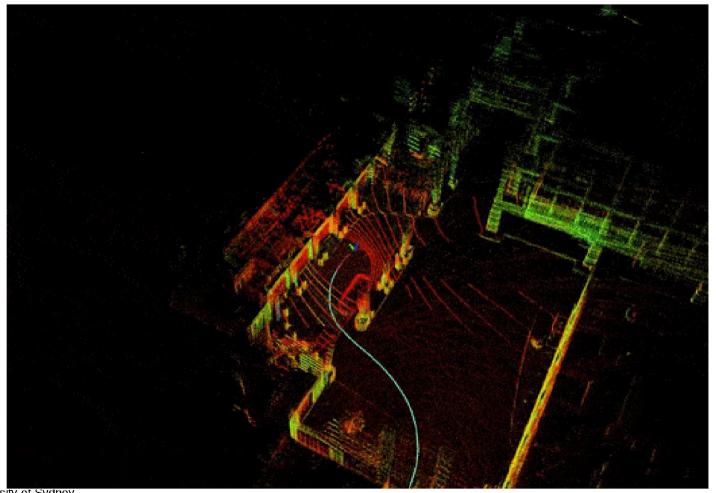


Cohen et al. 2018

#### **SLAM**



- Landmark
- Robot
- Odometry



#### **Challenges**



Traditional sensors fail: e.g. high dynamic range

Also reflection, backscatter, The University of Sydney transparency



Mapping under scattering and attenuating media



Changing scene conditions

#### **NeRFs for Robotics: Our Approach**

**Graphics: Fixed Poses** 



The University of Sydney

- Ray-based localisation framework leveraging unique spatial and visual representation in NeRF
- Incremental mapping with online updates

Page 65

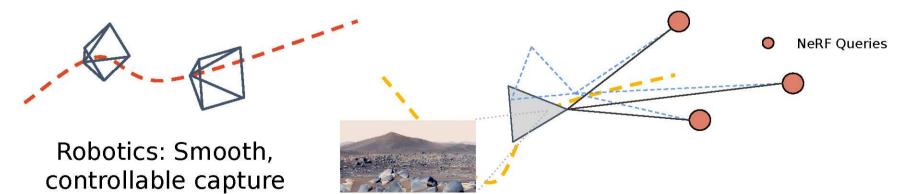
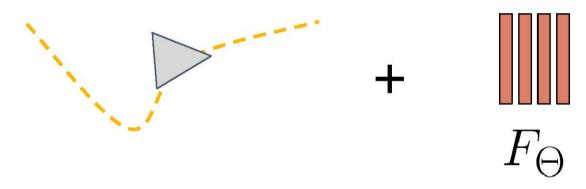


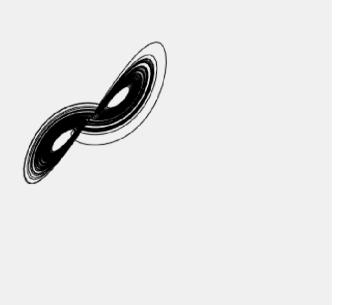
Image from Sensor

### **Simultaneously Derive**





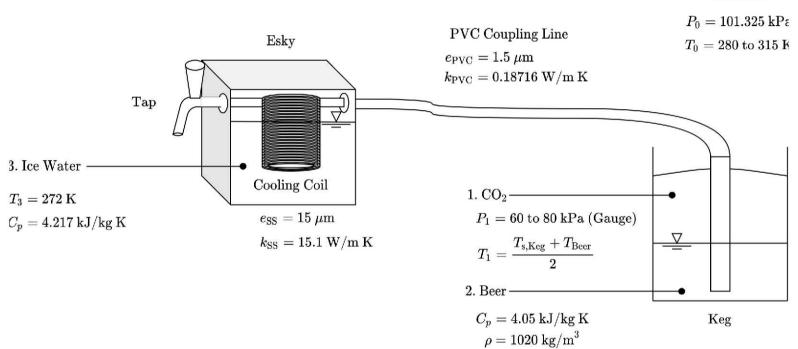
# Nature Doesn't Always Work as Intended



# Throwing neural networks at things is cheating.

We study physics/maths/engineering to understand the universe.





# Throwing neural networks at things is cheating.

# We study physics/maths/engineering to understand the universe.

Maybe we can make neural nets smarter this way?

# All models are wrong, but some models are useful.

George Box

### Q&A

**Jack Naylor** 

jack.naylor@sydney.edu.a

nackjaylor.github.io





