Learning the Real World

An Introduction to Neural Implicit Representations

Jack Naylor

MTRX8700 Student Lectures 2pm 28/4/22

Neural Implicit Representations

Nature

Luckily for us: we live in a continuous world.

Things are smooth, differentiable and explainable by physics!

Nature is smooth and continuous!

Sound

Light + Fluids

Even the CMBR

Implicit Neural Representations

Measure Continuous Functions as Discrete Samples

Implicit Neural Representations

Cannot Always Reconstruct Difficult Continuous Functions from Discrete

Implicit Neural Representations

Learn an implicit function to approximate the continuous signal

The University of Sydney

Common Discretised Signals

Pixels are a discrete space

Video has pixels and a framerate (temporally discrete)

Meshes, pointclouds and PDE's all have discrete domains

An example: DeepSDF

- The simplest case: learn where a surface is.
- Discretise 3D space, sample points and say whether inside, or outside the bunny.
- Learn a continuous, smooth surface which separates physical regions.

Park et al. 2019

What sort of network do we need?

 $F(\mathbf{x}, \Phi, \nabla_{\mathbf{x}} \Phi, \nabla_{\mathbf{x}}^2 \Phi, \ldots) = 0, \ \Phi : \mathbf{x} \mapsto \Phi(\mathbf{x})$ Approximate *some* function Using *some* nonlinear activation function ReLU MLP

ReLU? Step? Leaky ReLU?

An MLP works as a function approximator, and by Cybenko's theorem: there exists an MLP of sufficient dimension which can approximate our function well enough.

What sort of network do we need?

 $F(\mathbf{x}, \Phi, \nabla_{\mathbf{x}} \Phi, \nabla_{\mathbf{x}}^2 \Phi, \ldots) = 0, \ \Phi : \mathbf{x} \mapsto \Phi(\mathbf{x})$ Approximate *some* function ReLU MLP

An MLP works as a function approximator, and by Cybenko's theorem: there exists an MLP of sufficient dimension which can approximate our function well enough.

NN(x, y, z)

Using *some* nonlinear activation function

ReLU? Step? Leaky ReLU?

What about sin?

$\boldsymbol{\phi}$ and $\boldsymbol{\nabla} \boldsymbol{\phi}$ and $\boldsymbol{\nabla} (\boldsymbol{\nabla} \boldsymbol{\phi})$ and ...

Differentiability of continuous functions is key!

A ReLU's 2nd derivative is 0 - similar for many other nonlinear activation functions!

$\boldsymbol{\phi}$ and $\boldsymbol{\nabla} \boldsymbol{\phi}$ and $\boldsymbol{\nabla} (\boldsymbol{\nabla} \boldsymbol{\phi})$ and ...

Differentiability of continuous functions is key!

Sine functions are continuously differentiable!

We can model information of higher orders! Higher frequencies!

Sitzmann et al. 2020

Sitzmann et al. 2020

Why does SIREN work?

- Underlying smoothness to derivatives
- Derivative of a SIREN is a SIREN i.e. decision making with derivatives.
- Pseudo-Fourier decomposition

NeRF: Modelling Light

$$(x, y, z, \theta, \phi) \rightarrow \square \rightarrow (RGB\sigma)$$
$$F_{\Theta}$$

Mildenhall et. al (2020)

- Light is continuous!
- Use a network to learn a continuous, volumetric 5D light field!
- Why does NeRF not use SIREN?

Different light fields!

Depth for free! (We learn a volume!)

The University of Sydney

Positional Encoding

$$\gamma(\mathbf{x}) = \left(\sin(2^0\pi\mathbf{x}), \cos(2^0\pi\mathbf{x}), \dots, \sin(2^{L-1}\pi\mathbf{x}), \cos(2^{L-1}\pi\mathbf{x})\right)$$

Mildenhall et al. 2020

Virtually the same to us!

Virtually the same to a computer! 0.62 .

Sinusoids of different frequency

The University of Sydney $\gamma(\mathbf{x}) = \left(\sin(2^0\pi\mathbf{x}), \cos(2^0\pi\mathbf{x}), \dots, \sin(2^{L-1}\pi\mathbf{x}), \cos(2^{L-1}\pi\mathbf{x})\right)$

Page 26

The result? Fourier Positional Encoding!

Some obvious questions

- Is this just a NeRF thing?
- No! Uniquely encoding positions is now widely used in neural implicit functions
- Does it need to be sinusoids?
- No! In fact, gaussians and spherical harmonics work better.

SDFs w/ Spline Encoding

Some obvious questions

- Is this just a NeRF thing?
- No! Uniquely encoding positions is now widely used in neural implicit functions
- Does it need to be sinusoids?
- No! In fact, gaussians and spherical harmonics work better.

- Parameterise theta, phi over the sphere
- 2D lookup (u,v) to (theta,phi)

Modelling the Real World

Physics

- Neural networks know nothing about the real world!
- Fortunately, we've got a few hundred years of understanding physics and nice maths!
- What is NeRF modelling?

How Light Usually Works

Learning under physics

 Give the network some physics!

 Reflections change ray direction

Verbin et al. 2022

The University of Sydney

House of Mirrors

Mirrored Worlds

A NeRF is making sense of it, the best way it knows!

Model reflections!

Why no convolutions?

- Given the network an invariant framework (e.g rays have no relation).
- Convolutions and graphs work on discrete frameworks - we want a continuous function.
- Sounds like something to do with geometry...

Neural Implicit Representations

Can we process?

Geometric Deep Learning

Neural Implicit Representations

Can we process?

Geometric Deep Learning

Another lecture for another day...

Q&A

Jack Naylor

jack.naylor@sydney.edu.au

