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Neural Implicit Representations



Page 3The University of Sydney

Nature

Luckily for us: we live in a 
continuous world.

Things are smooth, 
differentiable and 
explainable by physics!

JPL/Caltech
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Sound

Nature is smooth and continuous!

Light +
Fluids

Even the 
CMBR
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Implicit Neural Representations
Measure 

Continuous 
Functions as 

Discrete 
Samples
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Implicit Neural Representations

Cannot Always 
Reconstruct Difficult 

Continuous 
Functions from 

Discrete

?
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Not Unique if 
Undersampled!

No!
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Implicit Neural Representations

Learn an implicit function to approximate 
the continuous signal
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Common Discretised Signals

Pixels are a discrete space Video has pixels and a framerate 
(temporally discrete)

Meshes, pointclouds and PDE’s all 
have discrete domains

NFSA, NASA and Purdue University
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- The simplest case: learn 
where a surface is.

- Discretise 3D space, sample 
points and say whether 
inside, or outside the 
bunny.

- Learn a continuous, smooth 
surface which separates 
physical regions.

An example: DeepSDF

Park et al. 2019
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What sort of network do we need?

Approximate *some* function Using *some* nonlinear 
activation function

An MLP works as a function 
approximator, and by 
Cybenko’s theorem: there exists 
an MLP of sufficient dimension 
which can approximate our 
function well enough.

ReLU? Step? Leaky ReLU?
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What sort of network do we need?

Approximate *some* function Using *some* nonlinear 
activation function

An MLP works as a function 
approximator, and by 
Cybenko’s theorem: there exists 
an MLP of sufficient dimension 
which can approximate our 
function well enough.

ReLU? Step? Leaky ReLU?

What about sin?
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Differentiability of 
continuous functions is 
key!

A ReLU’s 2nd derivative is 
0 - similar for many other 
nonlinear activation 
functions! 

𝞅 and 𝛁𝞅 and 𝜵(𝛁𝞅) and …

𝛁𝞅

𝞅

𝛁(𝛁𝞅)
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Differentiability of 
continuous functions is 
key!

Sine functions are 
continuously differentiable!

We can model information 
of higher orders! Higher 
frequencies!

𝞅 and 𝛁𝞅 and 𝜵(𝛁𝞅) and …

𝛁𝞅

𝞅

𝛁(𝛁𝞅)

sin(x)

cos(x)

-sin(x)
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SIREN

Sitzmann et al. 2020

https://docs.google.com/file/d/1KNHXxjqTy_ULeTr28Wg2pEgME0CEtrqj/preview
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Sitzmann et al. 2020

https://docs.google.com/file/d/1DDUQ4CPlDMI61eS5FmQryMkMvrtzAbyT/preview
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- Underlying smoothness to 
derivatives

- Derivative of a SIREN is a 
SIREN i.e. decision making 
with derivatives.

- Pseudo-Fourier 
decomposition

Why does SIREN work?

GT

SIREN

ReLU
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- Light is continuous!
- Use a network to 

learn a continuous, 
volumetric 5D light 
field!

- Why does NeRF not 
use SIREN?

NeRF: Modelling Light

Mildenhall et. al (2020)
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Different light 
fields!

Depth for free!
(We learn a 
volume!)

Tancik et al. 2021

Mildenhall et al. 2020
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Positional Encoding
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The Key to NeRF

Mildenhall et al. 2020
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Compare the pair?
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Compare the pair?

Virtually the 
same to us!
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0.62
0.63

Compare the pair?

Virtually the 
same to a 
computer!
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0.62
0.63

0.86

Compare the pair?
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Sinusoids of 
different 
frequency



Page 27The University of Sydney



Page 28The University of Sydney

The result? Fourier Positional Encoding!

https://docs.google.com/file/d/1VkobkMJZcFwmJlcHP04PlHNdrilsulUl/preview
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- Is this just a NeRF thing? 
- No! Uniquely encoding positions is now widely used in 

neural implicit functions

- Does it need to be sinusoids?
- No! In fact, gaussians and spherical harmonics work better.

Some obvious questions
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SDFs w/ Spline Encoding

Wang et al. 2019
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- Is this just a NeRF thing? 
- No! Uniquely encoding positions is now widely used in 

neural implicit functions

- Does it need to be sinusoids?
- No! In fact, gaussians and spherical harmonics work better.

Some obvious questions
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- Parameterise theta, phi over the sphere
- 2D lookup (u,v) to (theta,phi)
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Modelling the Real World
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Physics

- Neural networks know nothing about the real world!
- Fortunately, we’ve got a few hundred years of understanding 

physics and nice maths!
- What is NeRF modelling?
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How Light Usually Works

Reflection

Transmission

Refraction

Scattering
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- Give the network some 
physics!

- Reflections change ray 
direction

Learning under physics

Verbin et al. 2022

https://docs.google.com/file/d/1EKMQqT7ljkVYyezKB_uXPJcfaZ-HeanV/preview


Page 37The University of Sydney

House of Mirrors

https://docs.google.com/file/d/1okXB3uXm2-_HemVsSssdyvcoo85n2cKa/preview
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A NeRF is making sense of it, the best way it knows!

Mirrored Worlds
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Model reflections!

Guo et al. 2021
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- Given the network an invariant 
framework (e.g rays have no 
relation).

- Convolutions and graphs work on 
discrete frameworks - we want a 
continuous function.

- Sounds like something to do with 
geometry…

Why no convolutions?

Cohen et al. 2018

Masci et al. 2016
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Neural Implicit Representations

Geometric Deep Learning

Can we process?
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Neural Implicit Representations

Geometric Deep Learning

Another lecture for 
another day…

Can we process?
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Q&A

Jack Naylor

jack.naylor@sydney.edu.au 

mailto:jack.naylor@sydney.edu.au

